首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   122篇
  免费   8篇
  国内免费   7篇
  2022年   1篇
  2021年   2篇
  2020年   3篇
  2019年   1篇
  2018年   3篇
  2016年   1篇
  2015年   6篇
  2014年   10篇
  2013年   7篇
  2012年   4篇
  2011年   11篇
  2010年   6篇
  2009年   6篇
  2008年   7篇
  2007年   9篇
  2006年   6篇
  2004年   2篇
  2003年   4篇
  2002年   1篇
  2001年   5篇
  2000年   10篇
  1999年   4篇
  1998年   3篇
  1997年   2篇
  1996年   3篇
  1995年   2篇
  1994年   1篇
  1992年   2篇
  1991年   5篇
  1990年   2篇
  1989年   1篇
  1987年   1篇
  1984年   1篇
  1982年   1篇
  1981年   1篇
  1977年   1篇
  1974年   2篇
排序方式: 共有137条查询结果,搜索用时 21 毫秒
71.
72.
73.
74.
75.
Abstract We investigated the oviposition preference and larval performance of Helicoverpa armigera under laboratory conditions to determine if the oviposition preference of individual females on maize, cowpea and cotton correlates with offspring performance on the leaves of the same host plants. The host-plant preference hierarchy of females did not correlate with their offspring performance. Female moths chose host plants that contributed less to their offspring fitness. Plant effects accounted for the largest amount of variation in offspring performance, while the effects of female (family) was low. The offspring of most females (80%, n  = 10) were broadly similar, but 20% (two out of 10), showed marked difference in their offspring performance across the host-plant species. Similarly, there was no relation between larval feeding preference and performance. However, like most laboratory experiments, our experi-mental design does not allow the evaluation of ecological factors (for example, natural enemies, host abundance, etc.) that can play an important role in larval performance in the field. Overall, the results highlight the importance of carrying out preference performance analysis on the individual or family level, rather than pooling individuals to obtain average population data.  相似文献   
76.
The genetic variation of honeybee colonies collected in 22 localities on the Balearic Islands (Spain) was analysed using eight polymorphic microsatellite loci. Previous studies have demonstrated that these colonies belong either to the African or west European evolutionary lineages. These populations display low variability estimated from both the number of alleles and heterozygosity values, as expected for the honeybee island populations. Although genetic differentiation within the islands is low, significant heterozygote deficiency is present, indicating a subpopulation genetic structure. According to the genetic differentiation test, the honeybee populations of the Balearic Islands cluster into two groups: Gimnesias (Mallorca and Menorca) and Pitiusas (Ibiza and Formentera), which agrees with the biogeography postulated for this archipelago. The phylogenetic analysis suggests an Iberian origin of the Balearic honeybees, thus confirming the postulated evolutionary scenario for Apis mellifera in the Mediterranean basin. The microsatellite data from Formentera, Ibiza and Menorca show that ancestral populations are threatened by queen importations, indicating that adequate conservation measures should be developed for protecting Balearic bees.  相似文献   
77.
Homologous recombination between circular chromosomes generates dimers that cannot be segregated at cell division. Escherichia coli Xer site-specific recombination converts chromosomal and plasmid dimers to monomers. Two recombinases, XerC and XerD, act at the E. coli chromosomal recombination site, dif, and at related sites in plasmids. We demonstrate that Xer recombination at plasmid dif sites occurs efficiently only when FtsK is present and under conditions that allow chromosomal dimer formation, whereas recombination at the plasmid sites cer and psi is independent of these factors. We propose that the chromosome dimer- and FtsK-dependent process that activates Xer recombination at plasmid dif also activates Xer recombination at chromosomal dif. The defects in chromosome segregation that result from mutation of the FtsK C-terminus are attributable to the failure of Xer recombination to resolve chromosome dimers to monomers. Conditions that lead to FtsK-independent Xer recombination support the hypothesis that FtsK acts on Holliday junction Xer recombination intermediates.  相似文献   
78.
The integration of gene cassettes into integrons is effected by site-specific recombination catalysed by an integrase, IntI, encoded by the integron. The cassette-associated recombination sites, 59-base elements, are not highly conserved and vary in length from 57 to 141 bp. They can be identified by their location and the relationship of over 20 bp at their outer ends to consensus sequences that are imperfect inverted repeats of one another. The recombination cross-over occurs close to one end of the 59-base element, within a conserved core site with the consensus sequence GTTAGGC or GTTRRRY. By introducing single-base changes at each of these positions in the aadB 59-base element, bases that are critical for site activity were identified. The recombination cross-over was also localized to a unique position between the adjacent G and T residues. Changes introduced in the conserved AAC of the inverse core site (GCCTAAC or RYYYAAC) located at the opposite end of the 59-base element also reduced site activity but to a lesser extent. Sequences of rare recombinants revealed an alternative position for strand exchange and led to the conclusion that 59-base elements comprise two simple sites, analogous to those recognized by other integrases, with each simple site made up of a pair of inversely oriented IntI binding domains separated by a spacer of 7 or 8 bp. Re-examination of the sequences of all known 59-base elements revealed that this simple site configuration was present at both the left and right ends in all 59-base elements. The identity of bases in the spacer is not required for efficient recombination and the cross-over is located at one end of the spacer, suggesting that during IntI1-mediated recombination only one strand exchange occurs.  相似文献   
79.
80.
新生隐球菌是临床上最重要的侵袭性病原真菌之一,可感染免疫抑制和免疫正常人群引发具有致命威胁的隐球菌性脑膜脑炎.近年来,隐球菌嗜中枢神经系统感染的机制研究取得了长足的进展,隐球菌参与侵袭中枢神经系统的相关毒力因子及多条宿主细胞应答信号通路相继被发现.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号